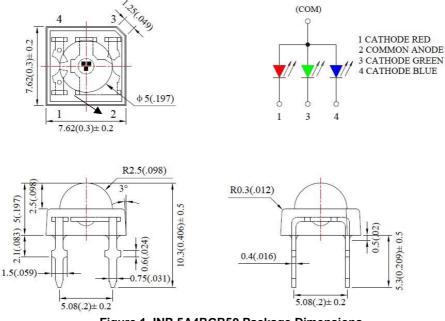


Features


- Low Profile, Stable Color
- 4 Leads With 5mm Dome
- Water Clear Lens
- InGaN / AllnGaP Technology
- Solid State Reliability
- Special Packaging Available Upon Request

Description

The INP-5A4RGB50 is a high brightness Piranha LED. It is 4 leads with 5mm dome through-hole type LED which can be used in various applications.

Applications

- Consumer Electronics
- Variable Message Signs (VMS)
- Automobile After Market
- Industrial Equipment
- Advertising Signs

Package Dimensions in mm

2

Figure 1. INP-5A4RGB50 Package Dimensions

Notes

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25 mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.00 mm (.039") max.
- 4. Specifications are subject to change without notice.

Absolute Maximum Rating at 25°C (Note)

Product	Emission Color	P _d (mW)	I _F (mA)	I _{FP} * (mA)	V _R (V)	T _{OP} (⁰C)	T _{ST} (⁰C)
	Red	60					
INP-5A4RGB50	Green	90	25	100	5	-40°C to +85°C	-40℃ to +100℃
	Blue	90					

Notes

1. Derate linearly as shown in derating curve.

2. Duty Factor = 10%, Frequency = 1 kHz.

Electrical Characteristics $T_A = 25$ (Note)

Product	Emission		VF	(V)		λ(nm)		Viewing Angle	I*∨(ı	mcd)
	Color	l⊧(mA)	min	max	λD	λP	Δλ	201/2	min	typ.
	Red	20	1.6	2.4	624	632	20	50	500	1000
INP-5A4RGB50	Green	20	2.8	3.6	525	520	35	50	1000	2000
	Blue	20	2.8	3.6	470	468	25	50	200	500

Notes

1. Performance guaranteed only under conditions listed in above tables.

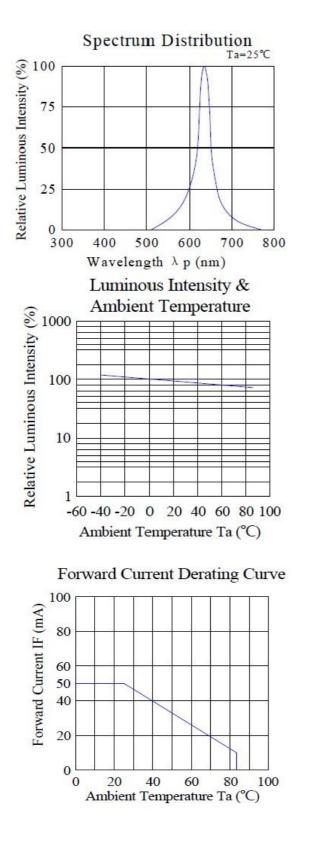
2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

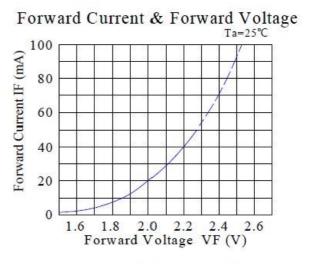
3. 201/2 is the o-axis angle where the luminous intensity is 1/2 the peak intensity.

4. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

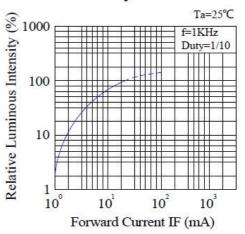
ESD Precaution

ATTENTION: Electrostatic Discharge (ESD) protection

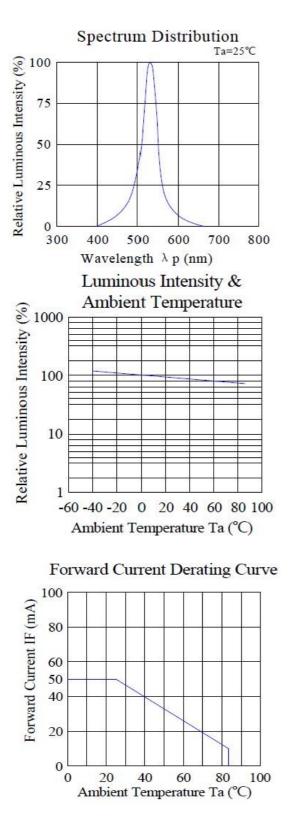

The symbol above denotes that ESD precaution is needed. ESD protection for GaP and AlGaAs based chips is necessary even though they are relatively safe in the presence of low static-electric discharge. Parts built with AlInGaP, GaN, or/and InGaN based chips are STATIC SENSITIVE devices. ESD precaution must be taken during design and assembly.

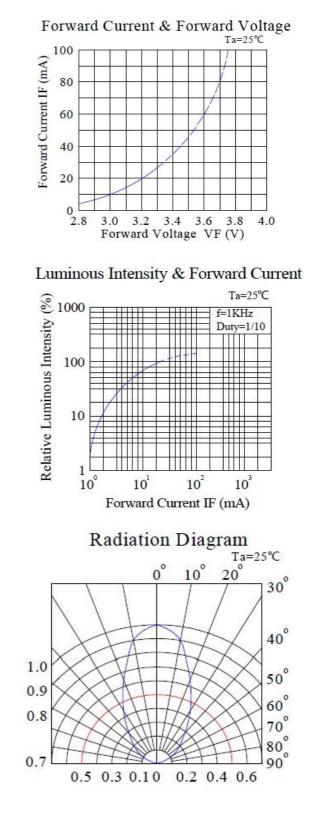

If manual work or processing is needed, please ensure the device is adequately protected from ESD during the process.

Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

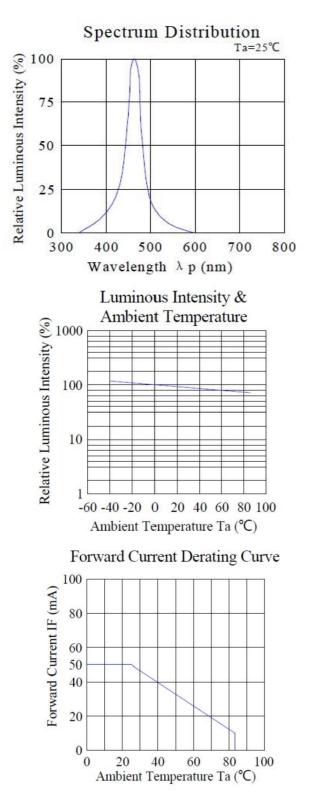


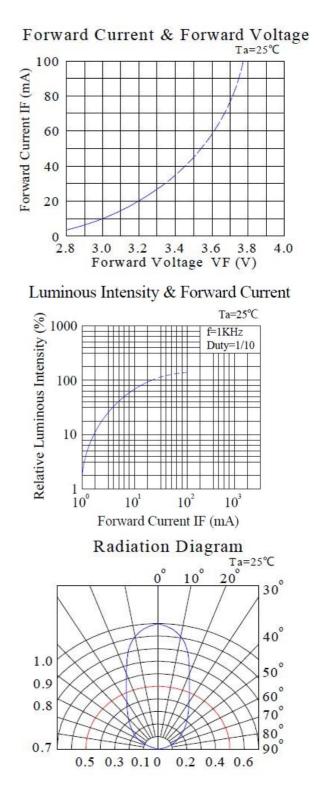
Typical Characteristic Curves – R


Luminous Intensity & Forward Current

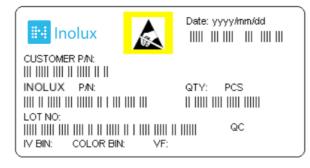


Radiation Diagram Ta=25°C 20° 10° 0° 30° 40° 1.0 50° 0.9 60° 0.8 70° 80° 90° 0.7 0.3 0.10 0.2 0.4 0.6 0.5


Typical Characteristic Curves – G



Typical Characteristic Curves – B



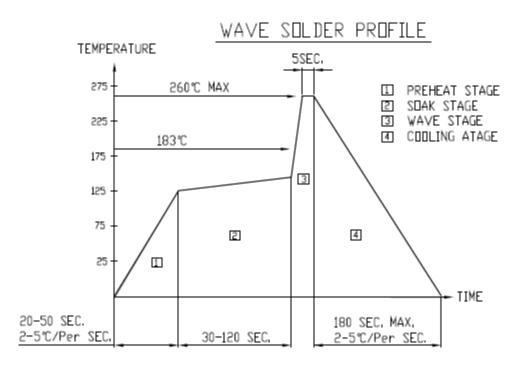
Ordering Information

Product	Emission Color	Technology	Test Current I _F (mA)	Luminous Intensity Iv (mcd) (Typ.)	Forward Voltage V _F (V) (Typ.)	Orderable Part Number
	Red	AllnGaP	20	1000	2.0	
INP-5A4RGB50	Green	InGaN	20	2000	3.2	INP-5A4RGB50
	Blue	InGaN	20	500	3.2	

Label Specifications

Inolux P/N:

Ι	Ν	Р	-	5	А	4	RGB	5	0	-	х	х	х	Х
				Package		Package		Package Lead Color View Ang					mizec ıp-off	
Thr	Inolux ough I Piranh	lole		do 5A Stan	5mm me A = dard ation	4 = 4 leads	R: 624 nm G: 525 nm B: 470 nm	50 = 5	0 deg.					


Lot No.:

Z	2	0	1	7	01	24	001
Internal		Voor (2017	, 2018,)	Month	Data	Serial	
Tracker		fear (2017	, 2018,)	wonth	Date	Serial	

Soldering

Recommended soldering conditions:

Soldering Iron

Basic Spec is Max 3 sec. @ 300°C. Lamps without stopper must leave a min. of 3mm clearance from base of the lens to the soldering point.

Rework

Caution is advised when rework is performed. Rework should be completed within 4 second under 245°C using a double-headed soldering iron.

Reliability

Item	Frequency/ lots/ samples/ failures	Standards Reference	Conditions
Precondition	For all reliability monitoring tests according	J-STD-020	1.) Baking at 85°C for 24hrs 2.) Moisture storage at 85°C/ 60% R.H. for
Solderability	to JEDEC Level 2 1Q/ 1/ 22/ 0	JESD22-B102-B And CNS-5068	168hrs Accelerated aging 155°C/ 24hrs Tinning speed: 2.5+0.5cm/s Tinning: A: 215°C/ 3+1s or B: 260°C/ 10+1s
Resistance to soldering heat		CNS-5067	Dipping soldering terminal only Soldering bath temperature A: 260+/-5°C; 10+/-1s B: 350+/-10°C; 3+/-0.5s
Operating life test	1Q/ 1/ 40/ 0	CNS-11829	 Precondition: 85°C baking for 24hrs 85°C/ 60%R.H. for 168hrs Tamb25°C; IF=20mA; duration 1000hrs
High humidity, high temperature bias	1Q/ 1/ 45/ 0	JESD-A101-B	Tamb: 85°C Humidity: 85% R.H., IF=5mA Duration: 1000hrs
High temperature bias	1Q/ 1/ 20	IN specs.	Tamb: 55°C IF=20mA Duration: 1000hrs
Pulse life test	1Q/ 1/ 40/ 0		Tamb25°C, If=20mA,, Ip=100mA, Duty cycle=0.125 (tp=125 μ s,T=1sec) Duration 500hrs)
Temperature cycle	1Q/ 1/ 76/ 0	JESD-A104-A IEC 68-2-14, Nb	A cycle: -40 degree C 15min; +85 degree C 15min Thermal steady within 5 min 300 cycles 2 chamber/ Air-to-air type
High humidity storage test	1Q/ 1/ 40/ 0	CNS-6117	60+3°C 90+5/-10% R.H. for 500hrs
High temperature storage test	1Q/ 1/ 40/ 0	CNS-554	100+10°C for 500hrs
Low temperature storage test	1Q/ 1/ 40/ 0	CNS-6118	-40+5°C for 500hrs

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	06-18-2020

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.