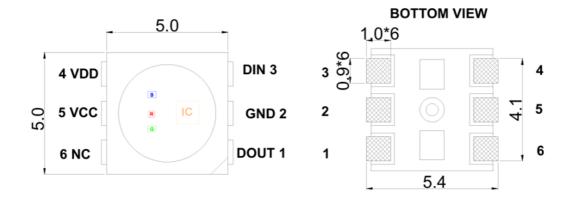


Features

- RoHS2.0 Compliant
- Top SMD internal integrated high-quality external control line serial cascade constant current IC; 12V application.
- Built-in reset circuits, the light does not turn on when powered on.
- Grayscale adjustment: 256 levels.
- Single-line return-to-zero code transmission protocol, unlimited cascading.
- The data transmission frequency is operated at 800Kbps. When the refresh rate reaches 30 frames/second, the number of cascade points must be less than 1024 points.
- Low power consumption, low product heat and high reliability.
- High-voltage R/G/B high-brightness chips, high light efficiency.
- Small pressure drops and high color consistency.


Description

The IN-PIH55TBT2R2G2B is 5.0*5.0*1.6mm RGB LED with integrated IC. It is a single-wire transmission LED with three channel (RGB) intelligent driving control circuit and light emitting circuit. The LED contains a signal decoding module, data buffer, and a built-in reset circuit.

Applications

- Full color LED string light
- LED full color module
- LED scene lighting
- Consumer electronics

Package Outline Dimensions & Pin Configuration

- 1. The above markings are in millimeters.
- 2. Unless otherwise specified, the dimensional tolerance is $\pm\,0.1$ millimeters.

Figure 1. IN-PIH55TBT2R2G2B Package Outline Dimensions

Pin Configuration

Number	Symbol	Pin Name	Function Description			
1	DOUT	Data output	Control data signal output			
2	GND	Ground	Power grounding			
3	DIN	Data input	Control data signal input			
4	VDD	Power supply	IC Power supply pin			
5	VCC	Power supply	RGB Power supply pin			
6	NC	Vacant Pin	Vacant Pin			

PCB recommended pad size:

TOP VIEW 4 VDD 1.2-6 3 DIN 4 VCC 4.4 0.4 1 DOUT

Notes:

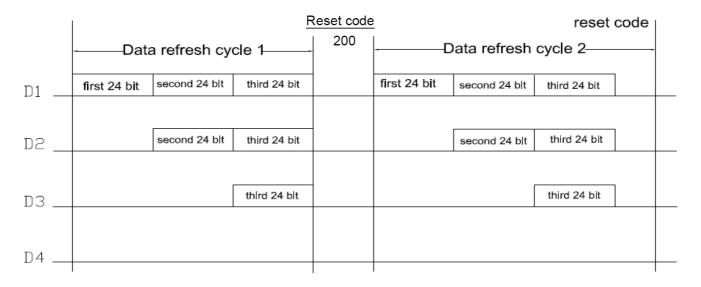
1. Dimension in millimeter, tolerance is ± 0.1 mm unless otherwise noted.

Absolute Maximum Rating $(Ta = 25 \ C)$

Parameter	Symbol	Range	Unit	
Danisanaharakan	17	10~13.5 (VCC 12V)		
Power supply voltage	V _{DD}	3.5~5.5 (VCC 12V)	V	
Operating temperature	Торт	−40 ~ +85	°C	
Storage temperature	Тѕтс	-40 ~ +85	°C	
ESD pressure (HBM)	Vesd	2K	V	

LED Characteristics (*Ta* = 25°C)

Color	IN-PIH55TBT2	R2G2B (2.1mA)		
Color	Wavelength(nm)	Light Intensity(mcd)		
Red	615-625	320-580		
Green	520-530	700-1165		
Blue	465-475	140-280		

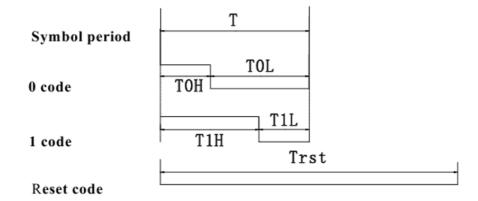

Recommended Operating Ranges (Ta=-25°C)

Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
The chip input voltage	Vcc	10	12	13.5	V	-
Cianalian of the thread all	V _{IH}	0.5*VDD	-	-	V	
Signal input flip threshold	V _{IL}	-	-	0.3*VDD	V	+VDD=5.0V
R/G/B output drive current	І _{роит}	-	2.1	-	mA	V _{DS} =1.5V
The frequency of PWM	F _{РWМ}	-	4.6	-	KHZ	-
0.00	,	-	0.17	-	^	VDD=5V
Static power consumption	I_{DD}	-	0.20	-	mA	VDD=12V
Transfer rate	F _{DIN}	-	800	-	Kbps	-

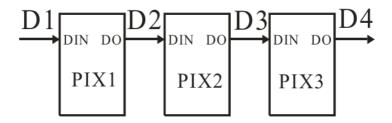
Suggested data transmission time

	Name	Min	Actual Value	Max	Unit
Т	Symbol Period	1.20	-	-	μs
ТОН	0 code, high level time	0.30	0.32	0.35	μs
T0L	0 code, low level time	0.80	-	-	μs
T1H	1 code, high level time	0.75	0.85	1.00	μs
T1L	1 code, low level time	0.20	-	-	μs
Trst	Reset code, low level time	>200	-	-	μs

Data transmission method (Ta=25°C)


Notes:

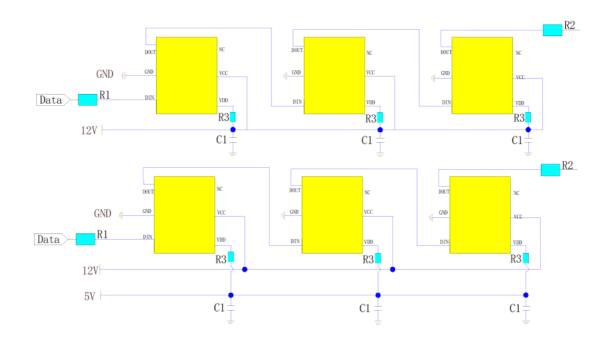
D1 is the data sent by the MCU, and D2, D3, and Dn are the data automatically shaped and forwarded by the cascade circuit.



Time series waveform diagram

Input code type

Connection method

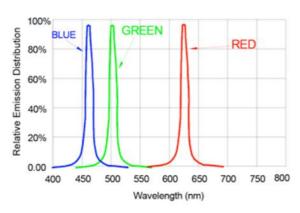

24 bits data structure:

G 7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	R0	B 7	B6	B5	B4	В3	B2	B1	В0

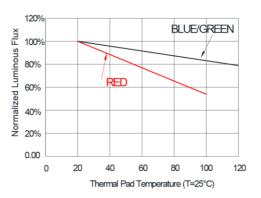
Notes: High bit first, data is sent in the order of GRB

Principles of Applied Circuits

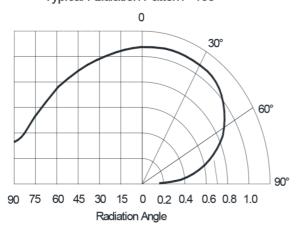
In application, to prevent the instantaneous high voltage generated by the live plugging and unplugging of the product during testing from damaging the internal signal input and output pins of the IC, a protective resistor should be connected in series at the signal input and output ends. In addition, to make the IC chips work more stably, the decoupling capacitors between the LEDs are indispensable.


Application 1: For soft or hard light strips, the transmission distance between the LEDs is short. It is recommended to connect a protective resistor in series at the signal input and output ends, that is, R1=R2 is about 500 ohms. When the VDD is 12V, R3 is about $1K\Omega$; and when the VDD is 5V, R3 is about 100Ω , depending on the actual usage.

Application 2: For modules or other products, the transmission distance between the LEDs is long. Due to different wire materials and transmission distances, the protective resistors connected in series at both ends of the signal will be slightly different; depending on the actual application.

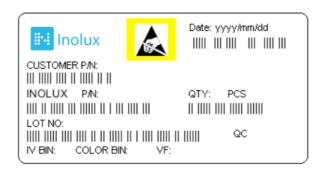


Photoelectric characteristic


Wavelength Characteristics

Thermal Pad Temperature vs. Relative Light Output

Typical Radiation Pattern 160°

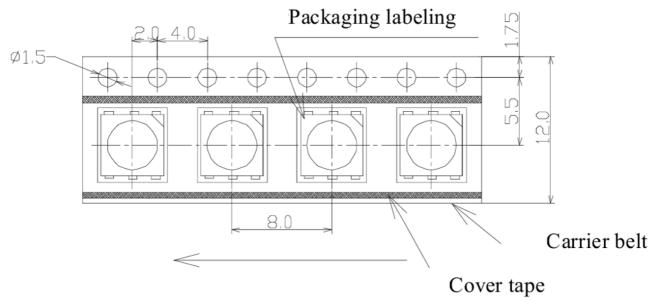


Ordering Information

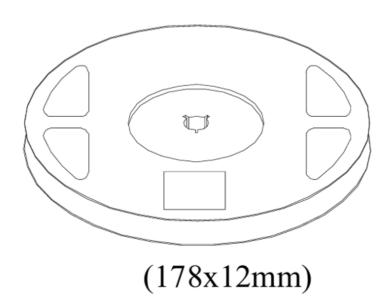
Product	Emission Color	lv(mcd)	Orderable Part Number
	R	320-580	
IN-PIH55TBT2R2G2B	G	700-1165	IN-PIH55TBT2R2G2B
	В	140-280	

Label Specifications

Inolux P/N:


I	N	PIH	-	55	Т	В	Т	2	R	2	G	2	В	-	Χ	Χ	Χ	Χ
		Product		Package	Die Qty.	Variation	Orientation	Current	Color	Current	Color	Current	Color			Custo Stam		
Inol	ux	PI- Single trace IC H- High voltage		55TBT = 5.0 x 5.0 x	1.6 mm,	(6 pins)	T = Top Mount	2 = 2mA	R = 624 nm	2 = 2mA	G = 520 nm	2 = 2mA	B = 470 nm					

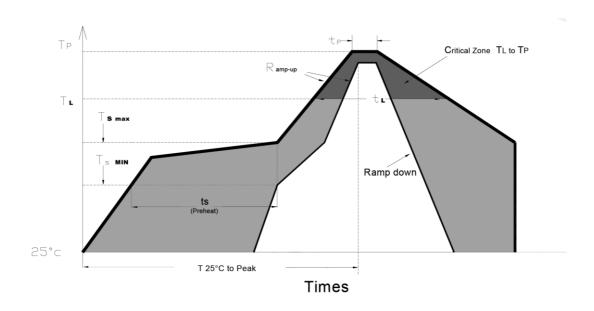
Lot No.:


Z	2	0	1	7	01	24	001
Internal		Voor (2017		Month	Data	Corial	
Tracker	Vear (2017, 2018, 1)					Date	Serial

Packaging standards

Carrier feeding direction

IN-PIH55TBT2R2G2B 5050 RGB LED 6-Pins with Integrated IC


Precautions

Please read the following notes before using the product:

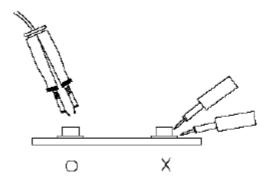
- 1. Storage
- 1.1 Do not open moisture proof bag before the products are ready to use.
- 1.2 Before opening the package, the LEDs should be kept at 30℃ or less and 80%RH or less.
- 1.3 The LEDs should be used within a year.
- 1.4 After opening the package, the LEDs should be kept at 30° C or less and 60%RH or less.
- 1.5 The LEDs should be used within 24 hours after opening the package.
- 1.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: $60\pm5^{\circ}$ for 24 hours.

IN-PIH55TBT2R2G2B 5050 RGB LED 6-Pins with Integrated IC

2. Soldering Condition Recommended soldering conditions:

Profile Feature	Lead-Free Solder				
Average Ramp-Up Rate (Ts _{max} to Tp)	3°C/second max.				
Preheat: Temperature Min (Ts _{min})	150° C				
Preheat: Temperature Min (Ts _{max})	200 °C				
Preheat: Time (ts _{min to} ts _{max})	60-180 seconds				
Time Maintained Above: Temperature (T _L)	217 ℃				
Time Maintained Above: Time (t L)	60-150 seconds				
Peak/Classification Temperature (T P)	240 ℃				
Time Within 5°C of Actual Peak Temperature (tp)	<10 seconds				
Ramp-Down Rate	6°C/second max.				
Time 25 °C to Peak Temperature	<6 minutes max.				

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.


IN-PIH55TBT2R2G2B 5050 RGB LED 6-Pins with Integrated IC

3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260°C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

5. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

IN-PIH55TBT2R2G2B 5050 RGB LED 6-Pins with Integrated IC

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	04-22-2025

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.